
libvirt 0.7.3

Application
Development Guide
A guide to application development with libvirt

Application Development Guide Draft

Dani Coulson

Daniel Berrange

Daniel Veillard

Chris Lalancette

Laine Stump

Draft

libvirt 0.7.3 Application Development Guide
A guide to application development with libvirt
Edition 1

Author Dani Coulson
Author Daniel Berrange
Author Daniel Veillard
Author Chris Lalancette
Author Laine Stump
Copyright © 2009 Red Hat, Inc.

Copyright <trademark class="copyright"></trademark> 2009 Red Hat, Inc.

Copyright © 2009 Red Hat, Inc. and others.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat,
designate the libvirt Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with
CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the
original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

All other trademarks are the property of their respective owners.

This document provides a guide for application developers using libvirt.

http://creativecommons.org/licenses/by-sa/3.0/

Draft Draft

v

Preface ix
1. Document Conventions ... ix

1.1. Typographic Conventions ... ix
1.2. Pull-quote Conventions ... x
1.3. Notes and Warnings .. xi

2. We Need Feedback! ... xi

1. Introduction 1
1.1. Overview ... 1
1.2. Glossary of terms ... 1

2. Architecture 3
2.1. Object model ... 3

2.1.1. Hypervisor connections .. 3
2.1.2. Guest domains .. 3
2.1.3. Virtual networks ... 4
2.1.4. Storage pools .. 4
2.1.5. Storage volumes ... 5
2.1.6. Host devices ... 5

2.2. Driver model .. 6
2.3. Remote management ... 7

2.3.1. Basic usage .. 8
2.3.2. Data Transports ... 8
2.3.3. Authentication schemes ... 9
2.3.4. Remote URIs .. 10

2.4. Generating TLS certificates ... 13
2.4.1. Public Key Infrastructure setup ... 13

3. Connections 15
3.1. Overview .. 15
3.2. URI formats ... 16
3.3. Capability information ... 16
3.4. Host information ... 18
3.5. Event loop integration ... 18

3.5.1. Event Types .. 19
3.6. Security model ... 19
3.7. Error handling .. 19
3.8. Debugging / logging .. 19

4. Guest Domains 21
4.1. Domain overview .. 21
4.2. Listing domains .. 22
4.3. Lifecycle control ... 24

4.3.1. Provisioning ... 24
4.3.2. Save / restore .. 29
4.3.3. Migration ... 31
4.3.4. Autostart ... 31

4.4. Monitoring performance .. 31
4.4.1. Domain performance .. 31
4.4.2. vCPU performance .. 31
4.4.3. I/O statistics .. 31

4.5. Domain configuration .. 31
4.5.1. Boot modes ... 31

Application Development Guide Draft

vi

4.5.2. Memory / CPU resources ... 31
4.5.3. Lifecycle controls ... 31
4.5.4. Clock sync .. 31
4.5.5. Features .. 31

4.6. Device configuration ... 32
4.6.1. Emulator ... 32
4.6.2. Disks ... 32
4.6.3. Networking .. 32
4.6.4. Filesystems ... 32
4.6.5. Mice & tablets ... 32
4.6.6. USB device passthrough .. 32
4.6.7. PCI device passthrough ... 32

4.7. Live configuration change ... 33
4.7.1. Memory ballooning .. 33
4.7.2. CPU hotplug .. 33
4.7.3. Device hotplug / unplug .. 33
4.7.4. Device media change .. 34

4.8. Security model ... 34
4.9. Event notifications .. 34
4.10. Tuning .. 34

4.10.1. Scheduler parameters .. 34
4.10.2. NUMA placement ... 34

5. Storage Pools 35
5.1. Overview .. 35
5.2. Listing pools ... 35
5.3. Pool usage .. 35
5.4. Lifecycle control ... 35
5.5. Discovering pool sources .. 35
5.6. Pool configuration ... 35
5.7. Volume overview .. 35
5.8. Listing volumes .. 35
5.9. Volume information ... 35
5.10. Creating and deleting volumes .. 35
5.11. Cloning volumes ... 35
5.12. Configuring volumes ... 36

6. Virtual Networks 37
6.1. Overview .. 37
6.2. Listing networks ... 37
6.3. Lifecycle control ... 37
6.4. Network configuration ... 37

7. Network Interfaces 39
7.1. Overview .. 39
7.2. XML Interface Description Format ... 39
7.3. Retrieving Information About Interfaces ... 40

7.3.1. Enumerating Interfaces .. 40
7.3.2. Alternative method of enumerating interfaces .. 41
7.3.3. Obtaining a virInterfacePtr for an Interface .. 41
7.3.4. Retrieving Detailed Interface Info .. 42

7.4. Managing interface configuration files .. 43
7.4.1. Defining an inteface configuration ... 43

Draft

vii

7.4.2. Undefining an inteface configuration ... 44
7.5. Interface lifecycle management ... 44

7.5.1. Activating an interface .. 44
7.5.2. Activating an interface .. 44

7.6. Interface object memory management ... 45

8. Host Devices 47

9. Alternative Language Bindings 49
9.1. Python ... 49
9.2. Perl ... 49
9.3. Java .. 49

A. Revision History 51

viii

Draft Draft

ix

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface Draft

x

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit → Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

Draft Notes and Warnings

xi

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes your
life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will apply.
Ignoring a box labeled 'Important' won't cause data loss but may cause irritation and
frustration.

Warning
Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a bug report at http://libvirt.org/bugs.html

http://libvirt.org/bugs.html

xii

Chapter 1. Draft

1

Introduction
Libvirt is a hypervisor-independent virtualization API that is able to interact with the virtualization
capabilities of a range of operating systems.

This chapter provides an introduction to libvirt and defines common terms that will be used throughout
the guide.

1.1. Overview
Libvirt provides a common, generic and stable layer to securely manage domains on a node. As
nodes may be remotely located, libvirt provides all APIs required to provision, create, modify, monitor,
control, migrate and stop the domains, within the limits of hypervisor support for these operations.
Although multiple nodes may be accessed with libvirt simultaneously, the APIs are limited to single
node operations.

Libvirt is designed to work across multiple virtualization environments, which means that more
common capabilities are provided as APIs. Due to this, certain specific capabilities may not be
provided. For example, it does not provide high level virtualization policies or multi-node management
features such as load balancing. However, API stability ensures that these features can be
implemented on top of libvirt. To maintain this level of stability, libvirt seeks to isolate applications from
the frequent changes expected at the lower level of the virtualization framework.

Libvirt is intended as a building block for higher level management tools and applications focusing
on virtualization of a single node, with the only exception being domain migration between multiple
node capabilities. It provides APIs to enumerate, monitor and use the resources available on the
managed node, including CPUs, memory, storage, networking and Non-Uniform Memory Access
(NUMA) partitions. Although a management node can be located on a separate physical machine to
the management program, this should only be done using secure protocols.

1.2. Glossary of terms
To avoid ambiguity regarding terms and concepts used in this guide, refer to the following descriptions.

Term Description

Domain An instance of an operating system (or subsystem in the case of container
virtualization) running on a virtualized machine provided by the hypervisor.

Hypervisor A layer of software allowing virtualization of a node in a set of virtual machines,
which may have different configurations to the node itself.

Node A single physical machine.
Table 1.1. Terminology

2

Chapter 2. Draft

3

Architecture
This chapter describes the main principles and architecture choices behind the definition of the libvirt
API.

2.1. Object model
The scope of the libvirt API is intended to extend to all functions necessary for deployment and
management of virtual machines. This entails management of both the core hypervisor functions
and host resources that are required by virtual machines, such as networking, storage and PCI/USB
devices. Most of the APIs exposed by libvirt have a pluggable internal backend, allowing support
for different underlying virtualization technologies and operating systems. Thus, the extent of the
functionality available from an particular API is determined by the specific hypervisor driver in use and
the capabilities of the underlying virtualization technology.

2.1.1. Hypervisor connections
A connection is the primary or top level object in the libvirt API. An instance of this object is required
before attempting to use almost any of the APIs. A connection is associated with a particular
hypervisor, which may be running locally on the same machine as the libvirt client application,
or on a remote machine over the network. In all cases, the connection is represented with the
virConnectPtr object and identified by a URI. The URI scheme and path defines the hypervisor to
connect to, while the host part of the URI determines where it is located. Refer to Section 3.2, “URI
formats” for a full description of valid URIs.

An application is permitted to open multiple connections at the same time, even when using more than
one type of hypervisor on a single machine. For example, a host may provide both KVM full machine
virtualization and LXC container virtualization. A connection object may be used concurrently across
multiple threads. Once a connection has been established, it is possible to obtain handles to other
managed objects or create new managed objects, as discussed in Section 2.1.2, “Guest domains”..

2.1.2. Guest domains
A guest domain can refer to either a running virtual machine or a configuration that can be used to
launch a virtual machine. The connection object provides APIs to enumerate the guest domains,
create new guest domains and manage existing domains. A guest domain is represented with the
virDomainPtr object and has a number of unique identifiers.

Unique identifiers
• ID: positive integer, unique amongst running guest domains on a single host. An inactive domain

does not have an ID.

• name: short string, unique amongst all guest domains on a single host, both running and inactive.
To ensure maximum portability between hypervisors, it is recommended that names only include
alphanumeric (a - Z, 0 - 9), hyphen (-) and underscore (_) characters.

• UUID: 16 unsigned bytes, guaranteed to be unique amongst all guest domains on any host. RFC
4122 defines the format for UUIDs and provides a recommended algorithm for generating UUIDs
with guaranteed uniqueness.

Chapter 2. Architecture Draft

4

A guest domain may be transient or persistent. A transient guest domain can only be managed while
it is running on the host. Once it is powered off, all trace of it will disappear. A persistent guest domain
has its configuration maintained in a data store on the host by the hypervisor, in an implementation
defined format. Thus when a persistent guest is powered off, it is still possible to manage its inactive
configuration. A transient guest can be turned into a persistent guest while it is running by defining a
configuration for it.

Refer to Chapter 4, Guest Domains for further information about using guest domain objects.

2.1.3. Virtual networks
A virtual network provides a method for connecting the network devices of one or more guest domains
within a single host. The virtual network can either:

• Remain isolated to the host; or

• Allow routing of traffic off-node via the active network interfaces of the host OS. This includes the
option to apply NAT to IPv4 traffic.

A virtual network is represented by the virNetworkPtr object and has two unique identifiers.

Unique identifiers
• name: short string, unique amongst all virtual network on a single host, both running and inactive.

For maximum portability between hypervisors, applications should only use the characters a-
Z,0-9,-,_ in names.

• UUID: 16 unsigned bytes, guaranteed to be unique amongst all virtual networks on any host. RFC
4122 defines the format for UUIDs and provides a recommended algorithm for generating UUIDs
with guaranteed uniqueness.

A virtual network may be transient or persistent. A transient virtual network can only be managed while
it it is running on the host. When taken offline, all trace of it will disappear. A persistent virtual network
has its configuration maintained in a data store on the host, in an implementation defined format. Thus
when a persistent network is brought offline, it is still possible to manage its inactive config. A transient
network can be turned into a persistent network on the fly by defining a configuration for it.

After installation of libvirt, every host will get a single virtual network instance called 'default', which
provides DHCP services to guests and allows NAT'd IP connectivity to the host's interfaces. This
service is of most use to hosts with intermittent network connectivity. For example, laptops using
wireless networking.

Refer to Chapter 6, Virtual Networks for further information about using virtual network objects.

2.1.4. Storage pools
The storage pool object provides a mechanism for managing all types of storage on a host, such as
local disk, logical volume group, iSCSI target, FibreChannel HBA and local/network file system. A pool
refers to a quantity storage that is able to be allocated to form individual volumes. A storage pool is
represented by the virStoragePoolPtr object and has a pair of unique identifiers.

Draft Storage volumes

5

Unique identifiers
• name: short string, unique amongst all storage pools on a single host, both running and inactive.

For maximum portability between hypervisors applications should only rely on being able to use the
characters a-Z,0-9,-,_ in names.

• UUID: 16 unsigned bytes, guaranteed to be unique amongst all storage pools on any host. RFC
4122 defines the format for UUIDs and provides a recommended algorithm for generating UUIDs
with guaranteed uniqueness.

A storage pool may be transient, or persistent. A transient storage pool can only be managed while
it is running on the host and, when powered off, all trace of it will disappear (the underlying physical
storage still exists of course !). A persistent storage pool has its configuration maintained in a data
store on the host by the hypervisor, in an implementation defined format. Thus when a persistent
storage pool is deactivated, it is still possible to manage its inactive config. A transient pool can be
turned into a persistent pool on the fly by defining a configuration for it.

Refer to Chapter 5, Storage Pools for further information about using storage pool objects.

2.1.5. Storage volumes
The storage volume object provides management of an allocated block of storage within a pool,
be it a disk partition, logical volume, SCSI/iSCSI LUN, or a file within a local/network file system.
Once allocated, a volume can be used to provide disks to one (or more) virtual domains. A volume is
represented by the virStorageVolPtr object, and has three identifiers

Unique identifiers
• name: short string, unique amongst all storage volumes within a storage pool. For maximum

portability between implementations applications should only rely on being able to use the
characters a-Z,0-9,-,_ in names. The name is not guaranteed to be stable across reboots, or
between hosts, even if the storage pool is shared between hosts.

• Key: a opaque string, of arbitrary printable characters, intended to uniquely identify the volume
within the pool. The key is intended to be stable across reboots, and between hosts.

• Path: a file system path referring to the volume. The path is unique amongst all storage volumes on
a single host. If the storage pool is configured with a suitable target path, the volume path may be
stable across reboots, and between hosts.

Refer to Section 5.7, “Volume overview” for further information about using storage volume objects

2.1.6. Host devices
Host devices provide a view to the hardware devices available on the host machine. This covers
both the physical USB or PCI devices and logical devices these provide, such as a NIC, disk, disk
controller, sound card, etc. Devices can be arranged to form a tree structure allowing relationships
to be identified. A host device is represented by the virNodeDevPtr object, and has one general
identifier, though specific device types may have their own unique identifiers.

Unique identifiers
• name: short string, unique amongst all devices on the host. The naming scheme is determined by

the host operating system. The name is not guaranteed to be stable across reboots.

Chapter 2. Architecture Draft

6

Physical devices can be detached from the host OS drivers, which implicitly removes all associated
logical devices, and then assigned to a guest domain. Physical device information is also useful when
working with the storage and networking APIs to determine what resources are available to configure.

Refer to Chapter 8, Host Devices for further information about using host device objects.

2.2. Driver model
The libvirt library exposes a guaranteed stable API & ABI which is decoupled from any particular
virtualization technology. In addition many of the APIs have associated XML schemata which are
considered part of the stable ABI guarantee. Internally, there are multiple of implementations of the
public ABI, each targeting a different virtualization technology. Each implementation is referred to as
a driver. When obtaining a instance of the virConnectPtr object, the application developer can
provide a URI to determine which hypervisor driver is activated.

No two virtualization technologies have exactly the same functionality. The libvirt goal is not to restrict
applications to a lowest common denominator, since this would result in an unacceptably limited API.
Instead libvirt attempts to define a representation of concepts and configuration that is hypervisor
agnostic, and adaptable to allow future extensions. Thus, if two hypervisors implement a comparable
feature, libvirt provides a uniform control mechanism or configuration format for that feature.

If a libvirt driver does not implement a particular API, then it will return a VIR_ERR_NO_SUPPORT
error code enabling this to be detected. There is also an API to allow applications to the query certain
capabilities of a hypervisor, such as the type of guest ABIs that are supported.

Internally a libvirt driver will attempt to utilize whatever management channels are available for the
virtualization technology in question. For some drivers this may require libvirt to run directly on the host
being managed, talking to a local hypervisor, while others may be able to communicate remotely over
an RPC service. For drivers which have no native remote communication capability, libvirt provides a
generic secure RPC service. This is discussed in detail later in this chapter.

Hypervisor drivers
• Xen: The open source Xen hypervisor providing paravirtualized and fully virtualized machines.

A single system driver runs in the Dom0 host talking directly to a combination of the hypervisor,
xenstored and xend. Example local URI scheme xen:///.

• QEMU: Any open source QEMU based virtualization technology, including KVM. A single privileged
system driver runs in the host managing QEMU processes. Each unprivileged user account also
has a private instance of the driver. Example privileged URI scheme qemu:///system. Example
unprivileged URI scheme qemu:///session

• UML: The User Mode Linux kernel, a pure paravirtualization technology. A single privileged system
driver runs in the host managing UML processes. Each unprivileged user account also has a private
instance of the driver. Example privileged URI scheme uml:///system. Example unprivileged URI
scheme uml:///session

• OpenVZ: The OpenVZ container based virtualization technology, using a modified Linux host kernel.
A single privileged system driver runs in the host talking to the OpenVZ tools. Example privileged
URI scheme openvz:///system

• LXC: The native Linux container based virtualization technology, available with Linux kernels since
2.6.25. A single privileged system driver runs in the host talking to the kernel. Example privileged
URI scheme lxc:///

Draft Remote management

7

• Remote: Generic secure RPC service talking to a libvirtd daemon. Encryption and
authentication using a choice of TLS, x509 certificates, SASL (GSSAPI/Kerberos) and SSH
tunneling. URIs follow the scheme of the desired driver, but with a hostname filled in, and a data
transport name appended to the URI scheme. Example URI to talk to Xen over a TLS channel xen
+tls://somehostname/. Example URI to talk to QEMU over a SASL channel qemu+tcp:///
somehost/system

• Test: A mock driver, providing a virtual in-memory hypervisor covering all the libvirt APIs. Facilities
testing of applications using libvirt, by allowing automated tests to run which exercise libvirt APIs
without needing to deal with a real hypervisor Example default URI scheme test:///default.
Example customized URI scheme test:///path/to/driver/config.xml

Figure 2.1. libvirt driver architecture

2.3. Remote management
While many virtualization technologies provide a remote management capability, libvirt does not
assume this and provides a dedicated driver allowing for remote management of any libvirt hypervisor
driver. The driver has a variety of data transports providing considerable security for the data
communication. The driver is designed such that there is 100% functional equivalence whether talking
to the libvirt driver locally, or via the RPC service.

In addition to the native RPC service included in libvirt, there are a number of alternatives for remote
management that will not be discussed in this document. The libvirt-qpid project provides an
agent for the QPid messaging service, exposing all libvirt managed objects and operations over the

Chapter 2. Architecture Draft

8

message bus. This keeps a fairly close, near 1-to-1, mapping to the C API in libvirt. The libvirt-
CIM project provides a CIM agent, that maps the libvirt object model onto the DMTF virtualization
schema.

2.3.1. Basic usage
The server end of the RPC service is provided by the libvirtd daemon, which must be run on the
host to be managed. In an default deployment this daemon will only be listening for connection on a
local UNIX domain socket. This only allows for a libvirt client to use the SSH tunnel data transport.
With suitable configuration of x509 certificates, or SASL credentials, the libvirtd daemon can be
told to listen on a TCP socket for direct, non-tunneled client connections.

As can be seen from earlier example libvirt driver URIs, then hostname field in the URI is always
left empty for local libvirt connections. To make use of the libvirt RPC driver, only two changes are
required to the local URI. At least a hostname must be specified, at which point libvirt will attempt
to use the direct TLS data transport. An alternative data transport can be requested by appending
its name to the URI scheme. The URIs formats will be described in detail later in this document
Section 2.3.4, “Remote URIs”

2.3.2. Data Transports
To cope with the wide variety of deployment environments, the libvirt RPC service supports a number
of data transports, all of which can be configured with industry standard encryption and authentication
capabilities.

Transport Description

tls A TCP socket running the TLS protocol on the
wire. This is the default data transport if none is
explicitly requested, and uses a TCP connection
on port 16514. At minimum it is necessary to
configure the server with a x509 certificate
authority and issue it a server certificate. The
libvirtd server can, optionally, be configured
to require clients to present x509 certificates as a
means of authentication.

tcp A TCP socket without the TLS protocol on
the wire. This data transport should not be
used on untrusted networks, unless the SASL
authentication service has been enabled
and configured with a plug-in that provides
encryption. The TCP connection is made on port
16509.

unix A local only data transport, allowing users to
connect to a libvirtd daemon running as a
different user account. As it is only accessible
on the local machine, it is unencrypted. The
standard socket names are /var/run/
libvirt/libvirt-sock for full management
capabilities and /var/run/libvirt/
libvirt-sock-ro for a socket restricted to
read only operations.

Draft Authentication schemes

9

Transport Description

ssh The RPC data is tunneled over an SSH
connection to the remote machine. It requires
Netcat (nc) is installed on the remote machine
and that libvirtd is running with the UNIX domain
socket enabled. It is recommended that SSH
be configured to not require password prompts
to the client application. For example, if using
SSH public key authentication it is recommended
an ssh-agent by run to cache key credentials.
GSSAPI is another useful authentication mode
for the SSH transport allowing use of a pre-
initialized Keberos credential cache.

ext Any external program that can make a
connection to the remote machine by means
that are outside the scope of libvirt. If none of
the built-in data transports are satisfactory, this
allows an application to provide a helper program
to proxy RPC data over a custom channel.

Table 2.1. Transports

2.3.3. Authentication schemes
To cope with the wide variety of deployment environments, the libvirt RPC service supports a number
of authentication schemes on its data transports, with industry standard encryption and authentication
capabilities. The choice of authentication scheme is configured by the administrator in the /etc/
libvirt/libvirtd.conf file.

Scheme Description

sasl SASL is a industry standard for pluggable
authentication mechanisms. Each plug-in has a
wide variety of capabilities and discussion of their
merits is outside the scope of this document.
For the tls data transport there is a wide
choice of plug-ins, since TLS is providing data
encryption for the network channel. For the
tcp data transport, libvirt will refuse to use any
plug-in which does not support data encryption.
This effectively limits the choice to GSSAPI/
Kerberos. SASL can optionally be enabled on
the UNIX domain socket data transport if strong
authentication of local users is required.

polkit PolicyKit is an authentication scheme suitable for
local desktop virtualization deployments, for use
only on the UNIX domain socket data transport.
It enables the libvirtd daemon to validate that
the client application is running within the local
X desktop session. It can be configured to allow
access to a logged in user automatically, or

Chapter 2. Architecture Draft

10

Scheme Description
prompt them to enter their own password, or the
superuser (root) password.

x509 Although not strictly an authentication scheme,
the TLS data transport can be configured to
mandate the use of client x509 certificates. The
server can then whitelist the client distinguished
names to control access.

Table 2.2. Schemes

2.3.4. Remote URIs
Remote URIs have the general form ("[...]" meaning an optional part):

 driver[+transport]://[username@][hostname][:port]/[path][?extraparameters]

A detailed description of each component now follows

Component Description

driver The name of the libvirt hypervisor driver to
connect to. This is the same as that used in
a local URI. Some examples are xen, qemu,
lxc, openvz, and test. As a special case,
the psuedo driver name remote can be used,
which will cause the remote daemon to probe
for an active hypervisor and pick one to use.
As a general rule if the application knows what
hypervisor it wants, it should always specify the
explicit driver name and not rely on automatic
probing.

transport The name of one of the data transports
described earlier in this section. Possible
values include tls, tcp, unix, ssh and ext.
If omitted, it will default to tls if a hostname is
provided, or unix if no hostname is provided.

username When using the SSH data transport this allows
choice of a username that differs from the client's
current login name.

hostname The fully qualified hostname of the remote
machine. If using TLS with x509 certificates, or
SASL with the GSSAPI/Keberos plug-in, it is
critical that this hostname match the hostname
used in the server's x509 certificates / Kerberos
principle. Mis-matched hostnames will guarantee
authentication failures.

port Rarely needed, unless SSH or libvirtd has been
configured to run on a non-standard TCP port.
Defaults to 22 for the SSH data transport, 16509

Draft Remote URIs

11

Component Description
for the TCP data transport and 16514 for the
TLS data transport.

path The path should be the same path used for the
hypervisor driver's local URIs. For Xen, this is
always just /, while for QEMU this would be /
system.

extraparameters The URI query parameters provide the mean to
fine tune some aspects of the remote connection,
and are discussed in depth in the next section.

Table 2.3. URI components

Based on the information described here and with reference to the hypervisor specific URIs earlier in
this document, it is now possible to illustrate some example remote access URIs.

Connect to a remote Xen hypervisor on host node.example.com using ssh tunneled
data transport and ssh username root: xen+ssh://root@node.example.com/

Connect to a remote QEMU hypervisor on host node.example.com using TLS with
x509 certificates: qemu://node.example.com/system

Connect to a remote Xen hypervisor on host node.example.com using TLS,
skipping verification of the server's x509 certificate (NB: this is compromising your
security): xen://node.example.com/?no_verify=1

Connect to the local QEMU instances over a non-standard Unix socket (the full path
to the Unix socket is supplied explicitly in this case): qemu+unix:///system?
socket=/opt/libvirt/run/libvirt/libvirt-sock

Connect to a libvirtd daemon offering unencrypted TCP/IP connections on an
alternative TCP port 5000 and use the test driver with default configuration: test
+tcp://node.example.com:5000/default

For further information on local URIs, refer to Section 3.2, “URI formats”

Extra parameters
Extra parameters can be added to remote URIs as part of the query string (the part following "?").
Remote URIs understand the extra parameters shown below. Any others are passed unmodified
through to the backend. Note that parameter values must be URI-escaped. Refer to http://xmlsoft.org/
html/libxml-uri.html#xmlURIEscapeStr for more information.

Name Transports Description

name any transport The local hypervisor URI
passed to the remote
virConnectOpen function. This
URI is normally formed by
removing transport, hostname,
port number, username and
extra parameters from the
remote URI, but in certain
very complex cases it may
be necessary to supply the

http://xmlsoft.org/html/libxml-uri.html#xmlURIEscapeStr
http://xmlsoft.org/html/libxml-uri.html#xmlURIEscapeStr

Chapter 2. Architecture Draft

12

Name Transports Description
name explicitly. Example:
name=qemu:///system

command ssh, ext The external command. For
ext transport this is required.
For ssh the default is ssh.
The PATH is searched for
the command. Example:
command=/opt/openssh/
bin/ssh

socket unix, ssh The external command. For
ext transport this is required.
For ssh the default is ssh.
The PATH is searched for
the command. Example:
socket=/opt/libvirt/
run/libvirt/libvirt-
sock

netcat ssh The name of the netcat
command on the remote
machine. The default is nc. For
ssh transport, libvirt constructs
an ssh command which looks
like:

 command -p port [-l
 username] hostname netcat -U
 socket

Where port, username,
hostname can be specified as
part of the remote URI, and
command, netcat and socket
come from extra parameters
(or sensible defaults). Example:
netcat=/opt/netcat/bin/
nc

no_verify tls Client checks of the server's
certificate are disable if a non-
zero value is set. Note that
to disable server checks of
the client's certificate or IP
address you must change the
libvirtd configuration . Example:
no_verify=1

no_tty ssh If set to a non-zero value,
this stops ssh from asking
for a password if it cannot
log in to the remote machine

Draft Generating TLS certificates

13

Name Transports Description
automatically (For example,
when using a ssh-agent).
Use this when you don't have
access to a terminal - for
example in graphical programs
which use libvirt. Example:
no_tty=1

Table 2.4. Extra parameters for remote URIs

2.4. Generating TLS certificates
Libvirt supports TLS certificates for verifying the identity of the server and clients. There are two
distinct checks involved:

1. The client checks that it is connecting to the correct server by matching the certificate the server
sends with the server's hostname. This check can be disabled by adding ?no_verify=1. Refer
to Table 2.4, “Extra parameters for remote URIs” for details.

2. The server checks to ensure that only allowed clients are connected. This is performed using
either:

a. The client's IP address; or

b. The client's IP address and the client's certificate.

Server checking may be enabled or disabled using the libvirtd.conf file.

For full certificate checking you will need to have certificates issued by a recognized Certificate
Authority (CA) for your server(s) and all clients. To avoid the expense of obtaining certificates from a
commercial CA, there is the option to set up your own CA and tell your server(s) and clients to trust
certificates issues by your own CA. To do this, follow the instructions contained in the next section.

Be aware that the default configuration for libvirtd.conf allows any client to connect, provided that they
have a valid certificate issued by the CA for their own IP address. This setting may need to be made
more or less permissive, dependent upon your requirements.

2.4.1. Public Key Infrastructure setup
Placeholder

Location Machine Description Required fields

/etc/pki/CA/
cacert.pem

Installed on all clients
and servers

CA's certificate n/a

/etc/pki/
libvirt/private/
serverkey.pem

Installed on the server Server's private key n/a

/etc/pki/libvirt/
servercert.pem

Installed on the server Server's certificate
signed by the CA

CommonName (CN)
must be the hostname
of the server as it is
seen by clients.

Chapter 2. Architecture Draft

14

Location Machine Description Required fields

/etc/pki/
libvirt/private/
clientkey.pem

Installed on the client Client's private key. n/a

/etc/pki/CA/
cacert.pem

Installed on the client Client's certificate
signed by the CA

Distinguished
Name (DN) can be
checked against an
access control list
(tls_allowed_dn_list).

Table 2.5. Public Key setup

Chapter 3. Draft

15

Connections
In libvirt, a connection is the underpinning of every action and object in the system. Every entity that
wants to interact with libvirt, be it virsh, virt-manager, or a program using the libvirt library, needs to first
obtain a connection to the libvirt daemon on the host it is interested in interacting with. A connection
describes not only the type of virtualization technology that the agent wants to interact with (qemu,
xen, uml, etc), but also describes any authentication methods necessary to connect to that resource.

3.1. Overview
The very first thing a libvirt agent must do is call one of the libvirt connection functions to obtain a
virConnectPtr handle. This handle will be used in subsequent operations. The libvirt library provides 3
different functions for connecting to a resource:

 virConnectPtr virConnectOpen(const char *name)
 virConnectPtr virConnectOpenReadOnly(const char *name)
 virConnectPtr virConnectOpenAuth(const char *name, virConnectAuthPtr auth, int flags)

In all three cases there is a name parameter which in fact refers to the URI of the hypervisor to
connect to. The previous sections Section 2.2, “Driver model” and Section 2.3.4, “Remote URIs”
provide full details on the various URI formats that are acceptable. If the URI is omitted then libvirt
will apply some heuristics and probe for a suitable hypervisor driver. While this may be convenient for
developers doing adhoc testing, it is strongly recommended that applications do not rely on probing
logic since it may change at any time. Applications should always explicitly request which hypervisor
connection they want by providing a URI.

The difference between the three methods outlined above is the way in which they authenticate and
the resulting authorization level they provide. The first virConnectOpen method will attempt to
open a connection for full read-write access. It does not have any scope for authentication callbacks
to be provided, so it will only succeed for connections where authentication can be done based on
the POSIX credentials of the application. The second virConnectOpenReadOnly will attempt
to open a connection for read-only access. Such a connection has a restricted set of API calls that
are allowed, and is typically useful for monitoring applications that should not be allowed to make
changes. As before this API has no scope for authentication callbacks, so relies on POSIX credentials.
The final virConnectOpenAuth method is the most flexible, and effectively obsoletes the previous
two APIs. It takes an extra parameter providing an instance of the virConnectAuthPtr struct which
contains the callbacks for collecting authentication credentials from the client app. This allows libvirt to
prompt for usernames, passwords, and more. The libvirt API provides an instance of this struct via the
symbol virConnectAuthPtrDefault that implements callbacks suitable for a command line based
application. Graphical applications will need to provide their own callback implementations. The flags
parameter allows the application to request a read-only connection if desired.

A connections must be released by calling virConnectClose when no longer required. Connections
are a reference counted object, so if it is intended for a connection to be used from multiple threads
at once, each additional thread should call virConnectRef to ensure the connection is not freed
while still in use. Every extra call to virConnectRef must be accompanied by a corresponding
call to virConnectClose to relaese the reference when no longer required. Note also, that every
other object associated with a connection (virDomainPtr, virNetworkPtr, etc) will also hold a
reference on the connection. So to avoid leaking a connection object, applications must ensure all
associated objects are also freed.

Chapter 3. Connections Draft

16

3.2. URI formats
TBD

3.3. Capability information
The capabilities XML format provides information about a connection. In particular, it describes
the capabilities of the virtualization host, the virtualization driver, and the kinds of guests that the
virtualization technology can launch. Note that the capabilities XML can (and does) vary based on the
libvirt driver in use. An example capabilities XML looks like:

 <capabilities>
 <host>
 <cpu>
 <arch>x86_64</arch>
 </cpu>
 <migration_features>
 <live/>
 <uri_transports>
 <uri_transport>tcp</uri_transport>
 </uri_transports>
 </migration_features>
 <topology>
 <cells num='1'>
 <cell id='0'>
 <cpus num='2'>
 <cpu id='0'/>
 <cpu id='1'/>
 </cpus>
 </cell>
 </cells>
 </topology>
 </host>

 <guest>
 <os_type>hvm</os_type>
 <arch name='i686'>
 <wordsize>32</wordsize>
 <emulator>/usr/bin/qemu</emulator>
 <machine>pc</machine>
 <machine>isapc</machine>
 <domain type='qemu'>
 </domain>
 <domain type='kvm'>
 <emulator>/usr/bin/qemu-kvm</emulator>
 </domain>
 </arch>
 <features>
 <pae/>
 <nonpae/>
 <acpi default='on' toggle='yes'/>
 <apic default='on' toggle='no'/>
 </features>
 </guest>

 <guest>
 <os_type>hvm</os_type>
 <arch name='x86_64'>
 <wordsize>64</wordsize>
 <emulator>/usr/bin/qemu-system-x86_64</emulator>

Draft Capability information

17

 <machine>pc</machine>
 <machine>isapc</machine>
 <domain type='qemu'>
 </domain>
 <domain type='kvm'>
 <emulator>/usr/bin/qemu-kvm</emulator>
 </domain>
 </arch>
 <features>
 <acpi default='on' toggle='yes'/>
 <apic default='on' toggle='no'/>
 </features>
 </guest>

 </capabilities>

Example 3.1. Example QEMU driver capabilities

(the rest of the discussion will refer back to this XML using XPath notation). In the capabilities XML,
there is always the /host sub-document, and zero or more /guest sub-documents (while zero guest
sub-documents are allowed, this means that no guests of this particular driver can be started on this
particular host).

The /host sub-document describes the capabilities of the host.

/host/cpu/arch is a required XML node that describes the underlying host CPU architecture. As of this
writing, all libvirt drivers initialize this from the output of uname(2).

/host/cpu/features is an optional sub-document that describes additional cpu features present on the
host. As of this writing, it is only used by the xen driver to report on the presence or lack of the svm or
vmx flag, and to report on the presence or lack of the pae flag.

/host/migration_features is an optional sub-document that describes the migration features that
this driver supports on this host (if any). If this sub-document does not exist, then migration is
not supported. As of this writing, only the xen and qemu drivers support migration. The /host/
migration_features/live XML node exists if the driver supports live migration; both xen and qemu
support live migration.

/host/migration_features/uri_transports is an optional sub-document that describes alternate migration
connection mechanisms. These alternate connection mechanisms can be useful on multi-homed
virtualization systems. For instance, the virsh migrate command might connect to the source of the
migration via 10.0.0.1, and the destination of the migration via 10.0.0.2. However, due to security
policy, the source of the migration might only be allowed to talk directly to the destination of the
migration via 192.168.0.0/24. In this case, using the alternate migration connection mechanism would
allow this migration to succeed. As of this writing, the xen driver supports the alternate migration
mechanism "xenmigr", while the qemu driver supports the alternate migration mechanism "tcp". Please
see the documentation on migration (FIXME: where is this?) for more information.

The /host/topology sub-document describes the NUMA topology of the host machine; each NUMA
node is represented by a /host/topology/cells/cell, and describes which CPUs are in that NUMA node.
If the host machine is a UMA (non-NUMA) machine, then there will be only one cell and all CPUs will
be in this cell. This is very hardware-specific, so will necessarily vary between different machines.

/host/secmodel is an optional sub-document that describes the security model in use on the host. /
host/secmodel/model shows the name of the security model while /host/secmodel/doi shows the
Domain Of Interpretation. As of this writing, only the qemu driver supports the security model, and

Chapter 3. Connections Draft

18

only the selinux model is implemented. For more information about security, please see the Security
section. (FIXME: where is this?)

Each /guest sub-document describes a kind of guest that this host driver can start. This description
includes the architecture of the guest (i.e. i686) along with the ABI provided to the guest (i.e. hvm, xen,
or uml).

/guest/os_type is a required element that describes the type of guest.

qemu driver: always "hvm" for a fully-virtualized guest xen driver: either "xen" for a paravirtualized
guest or "hvm" for a fully virtualized guest uml driver: always "uml" lxc driver: always "exe" vbox driver:
always "hvm" for a fully-virtualized guest openvz driver: always "exe" one driver: always "hvm" esx
driver: Not supported at this time

/guest/arch is the root of an XML sub-document describing various virtual hardware aspects of
this guest type. It has a single attribute called "name", which can be used to refer back to this sub-
document.

/guest/arch/wordsize is a required element that describes how many bits per word this guest type
uses. This is typically 32 or 64.

/guest/arch/emulator is an optional element that describes the default path to the emulator for this
guest type. Note that the emulator can be overridden by the /guest/arch/domain/emulator element
(described below) for guest types that need alternate binaries.

/guest/arch/loader is an optional element that describes the default path to the firmware loader for
this guest type. Note that the default loader path can be overridden by the /guest/arch/domain/loader
element (described below) for guest types that use alternate loaders. At present, this is only used by
the xen driver for HVM guests.

There can be zero or more /guest/arch/machine elements that describe the default types of machines
that this guest emulator can emulate. Note that these default machine types can be overridden by the /
guest/arch/domain/machine elements (described below) for guest types that provide alternate machine
types. Typical values for this are "pc", and "isapc", meaning a regular PCI based PC, and an older, ISA
based PC, respectively.

There can be zero or more /guest/arch/domain XML sub-trees (although with zero /guest/arch/domain
XML sub-trees, no guests of this driver can be started). Each /guest/arch/domain XML sub-tree
has optional <emulator>, <loader>, and <machine> elements that override the respective defaults
specified above. For any of the elements that are missing, the default values are used.

The /guest/features optional sub-document describes various additional guest features that can be
enabled or disabled, along with their default state and whether they can be toggled on or off. FIXME:
describe more about this

3.4. Host information
TBD

3.5. Event loop integration
The purpose of the libvirt event loop APIs is so that libvirt can be easily integrated into event driven
applications, such as GUIs. These methods provide a way for the libvirt library to notify an application

Draft Event Types

19

that there are events that need servicing; the application can then service these events during it's
normal event loop.

In order to accomplish this, there are callbacks in both directions, from the application to libvirt, and
from libvirt to the application. When initially registering the event callback, the application should
provide various callbacks to libvirt; these functions will be called when libvirt adds, deletes, or
otherwise modifies a handle. When libvirt calls these functions, they should update internal application
state regarding the handles to be monitored.

Eventually a libvirt handle will need servicing. When this happens, the application should call the
callback previously provided by libvirt to service the handle in question.

3.5.1. Event Types
The event types define what types of events an event loop should monitor a particular handle for. The
event types are specific to libvirt, and must be translated by the application to and from poll() events.

VIR_EVENT_HANDLE_READABLE - the handle has data to read VIR_EVENT_HANDLE_WRITABLE
- writing to the handle will not block VIR_EVENT_HANDLE_ERROR - the handle has had some kind
of error VIR_EVENT_HANDLE_HANGUP - the handle has hung up. This typically means the handle
has been closed.

3.6. Security model
TBD

3.7. Error handling
TBD

3.8. Debugging / logging
TBD

20

Chapter 4. Draft

21

Guest Domains

4.1. Domain overview
A guest domain can refer to either a running virtual machine or a configuration which can be used
to launch a virtual machine. The connection object provides APIs to enumerate the guest domains,
create new guest domains and manage existing domains. A guest domain is represented with the
virDomainPtr object and has a number of unique identifiers:

Unique identifiers
• ID: positive integer, unique amongst running guest domains on a single host. An inactive domain

does not have an ID. If the host OS is a virtual domain, it is given a ID of zero by default. For
example, with the Xen hypervisor, Dom0 indicates a guest domain. Other domain IDs will be
allocated starting at 1, and incrementing each time a new domain starts. Typically domain IDs will
not be re-used until the entire ID space wraps around. The domain ID space is at least 16 bits in
size, but often extends to 32 bits.

• name: short string, unique amongst all guest domains on a single host, both running and inactive.
For maximum portability between hypervisors applications should only rely on being able to use the
characters a-Z,0-9,-,_ in names. Many hypervisors will store inactive domain configurations as
files on disk, based on the domain name.

• UUID: 16 unsigned bytes, guaranteed to be unique amongst all guest domains on any host. RFC
4122 defines the format for UUIDs and provides a recommended algorithm for generating UUIDs
with guaranteed uniqueness. If the host OS is itself a virtual domain, then by convention it will be
given a UUID of all zeros. This is the case with the Xen hypervisor, where Dom0 is a guest domain
itself.

A guest domain may be transient, or persistent. A transient guest domain can only be managed while
it is running on the host and, when powered off, all trace of it will disappear. A persistent guest domain
has its configuration maintained in a data store on the host by the hypervisor, in an implementation
defined format. Thus when a persistent guest is powered off, it is still possible to manage its inactive
config. A transient guest can be turned into a persistent guest on the fly by defining a configuration for
it.

Once an application has a unique identifier for a domain, it will often want to obtain the corresponding
virDomainPtr object. There are three, imaginatively named, methods to do lookup existing
domains, virDomainLookupByID, virDomainLookupByName and virDomainLookupByUUID.
Each of these takes a connection object as first parameter, and the domain identifier as the other.
They will return NULL if no matching domain exists. The connection's error object can be queried to
find specific details of the error if required.

 int domainID = 6;
 virDomainPtr dom;

 dom = virDomainLookupByID(conn, domainID);

Example 4.1. Fetching a domain object from an ID

Chapter 4. Guest Domains Draft

22

 int domainName = "someguest";
 virDomainPtr dom;

 dom = virDomainLookupByName(conn, domainName);

Example 4.2. Fetching a domain object from an name

 char *domainUUID = "00311636-7767-71d2-e94a-26e7b8bad250";
 virDomainPtr dom;

 dom = virDomainLookupByUUIDString(conn, domainUUID);

Example 4.3. Fetching a domain object from an UUID

For convenience of this document, the UUID example used the printable format of UUID. There is an
equivalent method which accepts the raw bytes unsigned char[]

4.2. Listing domains
The libvirt API exposes two lists of domains, the first contains running domains, while the second
contains inactive, persistent domains. The lists are intended to be non-overlapping, exclusive sets,
though there is always a small possibility that a domain can stop or start in between the querying of
each set. The events API described later in this section provides a way to track all lifecycle changes
avoiding this potential race condition.

The API for listing active domains, returns a list of domain IDs. Every running domain has a positive
integer ID, uniquely identifying it amongst all running domains on the host. The API for listing active
domains, virConnectListDomains, requires the caller to pass in a pre-allocated int array
which will be filled in domain IDs. The return value will be -1 upon error, or the total number of array
elements filled. To determine how large to make the ID array, the application can use the API call
virConnectNumOfDomains. Putting these two calls together, a fragment of code which prints a list
running domain IDs would be

 int i;
 int numDomains;
 int *activeDomains;

 numDomains = virConnectNumOfDomains(conn);

 activeDomains = malloc(sizeof(int) * numDomains);
 numDomains = virConnectListDomains(conn, activeDomains, numDomains);

 printf("Active domain IDs:\n");
 for (i = 0 ; i < numDomains ; i++) {
 printf(" %d\n", activeDomains[i]);
 }
 free(activeDomains);

Example 4.4. Listing active domains

In addition to the running domains, there may be some persistent inactive domain configurations
stored on the host. Since an inactive domain does not have any ID identifier, the listing of
inactive domains is exposed as a list of name strings. In a similar style to the API just discussed,

Draft Listing domains

23

the virConnectListDefinedDomains API requires the caller to provide a pre-allocated
char * array which will be filled with domain name strings. The return value will be -1 upon
error, or the total number of array elements filled with names. It is the caller's responsibility to
free the memory associated with each returned name. As you might expect, there is also a
virConnectNumOfDefinedDomains API to determine how many names are known. Putting these
calls together, a fragment of code which prints a list of inactive persistent domain names would be:

 int i;
 int numDomains;
 char **inactiveDomains;

 numDomains = virConnectNumOfDefinedDomains(conn);

 inactiveDomains = malloc(sizeof(char *) * numDomains);
 numDomains = virConnectListDomains(conn, inactiveDomains, numDomains);

 printf("Inactive domain names:\n");
 for (i = 0 ; i < numDomains ; i++) {
 printf(" %s\n", inactiveDomains[i]);
 free(inactiveDomains[i]);
 }
 free(inactiveDomains);

Example 4.5. Listing inactive domains

The APIs for listing domains do not directly return the full virDomainPtr objects, since this may
incur undue performance penalty for applications which wish to query the list of domains on a frequent
basis. Given a domain ID or name, obtaining a full virDomainPtr object is a straightforward matter
of calling one of the virDomainLookupBy{Name,ID} methods. So an example which obtained a
virDomainPtr object for every domain, both active and inactive, would be:

 virDomainPtr *allDomains;
 int numDomains;
 int numActiveDomains, numInactiveDomains;
 char *inactiveDomains;
 int *activeDomains;

 numActiveDomains = virConnectNumOfDomains(conn);
 numInactiveDomains = virConnectNumOfDefinedDomains(conn);

 allDomains = malloc(sizeof(virDomainPtr) *
 numActiveDomains + numInactiveDomains);
 inactiveDomains = malloc(sizeof(char *) * numDomains);
 activeDomains = malloc(sizeof(int) * numDomains);

 numActiveDomains = virConnectListDomains(conn,
 activeDomains,
 numActiveDomains);
 numInactiveDomains = virConnectListDomains(conn,
 inactiveDomains,
 numInactiveDomains);

 for (i = 0 ; i < numActiveDomains ; i++) {
 allDomains[numDomains]
 = virDomainLookupByID(activeDomains[i]);
 numDomains++
 }

Chapter 4. Guest Domains Draft

24

 for (i = 0 ; i < numInactiveDomains ; i++) {
 allDomains[numDomains]
 = virDomainLookupByName(inactiveDomains[i]);
 free(inactiveDomains[i]);
 numDomains++
 }
 free(activeDomains);
 free(inactiveDomains);

Example 4.6. Fetching all domain objects

4.3. Lifecycle control
TBD

4.3.1. Provisioning
Provisioning refers to the task of creating new guest domains, typically using some form of operating
system installation media. There are a wide variety of ways in which a guest can be provisioned, but
the choices available will vary according to the hypervisor and type of guest domain being provisioned.
It is not uncommon for an application to support several different provisioning methods.

4.3.1.1. APIs for provisioning
There are up to three APIs involved in provisioning guests. The virDomainCreateXML
command will create and immediately boot a new transient guest domain. When this guest domain
shuts down, all trace of it will disappear. The virDomainDefineXML command will store the
configuration for a persistent guest domain. The virDomainCreate command will boot a previously
defined guest domain from its persistent configuration. One important thing to note, is that the
virDomainDefineXML command can be used to turn a previously booted transient guest domain,
into a persistent domain. This can be useful for some provisioning scenarios that will be illustrated
later.

4.3.1.1.1. Booting a transient guest domain
To boot a transient guest domain, simply requires a connection to libvirt and a string containing the
XML document describing the required guest configuration. The following example assumes that conn
is an instance of the virConnectPtr object.

virDomainPtr dom;
const char *xmlconfig = "<domain>........</domain>";

dom = virConnectCreateXML(conn, xmlconfig, 0);

if (!dom) {
 fprintf(stderr, "Domain creation failed");
 return;
}

fprintf(stderr, "Guest %s has booted", virDomainName(dom));
virDomainFree(dom);

If the domain creation attempt succeeded, then the returned virDomainPtr will be a handle to the
guest domain. This must be released later when no longer needed by using the virDomainFree

Draft Provisioning

25

method. Although the domain was booted successfully, this does not guarantee that the domain is
still running. It is entirely possible for the guest domain to crash, in which case attempts to use the
returned virDomainPtr object will generate an error, since transient guests cease to exist when
they shutdown (whether a planned shutdown, or a crash). To cope with this scenario requires use of a
persistent guest.

4.3.1.1.2. Defining and booting a persistent guest domain
Before a persistent domain can be booted, it must have its configuration defined. This again requires
a connection to libvirt and a string containing the XML document describing the required guest
configuration. The virDomainPtr object obtained from defining the guest, can then be used to boot
it. The following example assumes that conn is an instance of the virConnectPtr object.

virDomainPtr dom;
const char *xmlconfig = "<domain>........</domain>";

dom = virConnectDefineXML(conn, xmlconfig, 0);

if (!dom) {
 fprintf(stderr, "Domain definition failed");
 return;
}

if (virDomainCreate(dom) < 0) {
 virDomainFree(dom);
 fprintf(stderr, "Cannot boot guest");
 return;
}

fprintf(stderr, "Guest %s has booted", virDomainName(dom));
virDomainFree(dom);

4.3.1.2. New guest provisioning techniques
This section will first illustrate two configurations that allow for a provisioning approach that is
comparable to those used for physical machines. It then outlines a third option which is specific to
virtualized hardware, but has some interesting benefits. For the purposes of illustration, the examples
that follow will use a XML configuration that sets up a KVM fully virtualized guest, with a single disk
and network interface and a video card using VNC for display.

<domain type='kvm'>
 <name>demo</name>
 <uuid>c7a5fdbd-cdaf-9455-926a-d65c16db1809</uuid>
 <memory>500000</memory>
 <vcpu>1</vcpu>
 the <os> block will vary per approach ...
 <clock offset='utc'/>
 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>destroy</on_crash>
 <devices>
 <emulator>/usr/bin/qemu-kvm</emulator>
 <disk type='file' device='disk'>
 <source file='/var/lib/libvirt/images/demo.img'/>

Chapter 4. Guest Domains Draft

26

 <driver name='qemu' type='raw'/>
 <target dev='hda'/>
 </disk>
 <interface type='bridge'>
 <mac address='52:54:00:d8:65:c9'/>
 <source bridge='br0'/>
 </interface>
 <input type='mouse' bus='ps2'/>
 <graphics type='vnc' port='-1' listen='127.0.0.1'/>
 </devices>
 </domain>

TIP: Be careful in the choice of initial memory allocation, since too low a value may cause mysterious
crashes and installation failures. Some operating systems need as much as 600 MB of memory for
initial installation, though this can often be reduced post-install.

4.3.1.2.1. CDROM/ISO image provisioning
All full virtualization technologies have support for emulating a CDROM device in a guest domain,
making this an obvious choice for provisioning new guest domains. It is, however, fairly rare to find a
hypervisor which provides CDROM devices for paravirtualized guests.

The first obvious change required to the XML configuration to support CDROM installation, is to add a
CDROM device. A guest domains' CDROM device can be pointed to either a host CDROM device, or
to a ISO image file. The next change is to determine what the BIOS boot order should be, with there
being two possible options. If the hard disk is listed ahead of the CDROM device, then the CDROM
media won't be booted unless the first boot sector on the hard disk is blank. If the CDROM device is
listed ahead of the hard disk, then it will be necessary to alter the guest config after install to make it
boot off the installed disk. While both can be made to work, the first option is easiest to implement.

The guest configuration shown earlier would have the following XML chunk inserted:

<os>
 <type arch='x86_64' machine='pc'>hvm</type>
 <boot dev='hd'/>
 <boot dev='cdrom'/>
</os>

NB, this assumes the hard disk boot sector is blank initially, so that the first boot attempt falls through
to the CD-ROM drive. It will also need a CD-ROM drive device added

<disk type='file' device='cdrom'>
 <source file='/var/lib/libvirt/images/rhel5-x86_64-dvd.iso'/>
 <target dev='hdc' bus='ide'/>
</disk>

With the configuration determined, it is now possible to provision the guest. This is an easy process,
simply requiring a persistent guest to be defined, and then booted.

const char *xml = "<domain>....</domain>";

Draft Provisioning

27

virDomainPtr dom;

dom = virDomainDefineXML(conn, xml);
if (!dom) {
 fprintf(stderr, "Unable to define persistent guest configuration");
 return;
}

if (virDomainCreate(dom) < 0) {
 fprintf(stderr, "Unable to boot guest configuration");
}

If it was not possible to guarantee that the boot sector of the hard disk is blank, then provisioning
would have been a two step process. First a transient guest would have been booted using CD-ROM
drive as the primary boot device. Once that completed, then a persistent configuration for the guest
would be defined to boot off the hard disk.

4.3.1.2.2. PXE boot provisioning
Some newer full virtualization technologies provide a BIOS that is able to use the PXE boot protocol to
boot of the network. If an environment already has a PXE boot provisioning server deployed, this is a
desirable method to use for guest domains.

PXE booting a guest obviously requires that the guest has a network device configured. The LAN
that this network card is attached to, also needs a PXE / TFTP server available. The next change is
to determine what the BIOS boot order should be, with there being two possible options. If the hard
disk is listed ahead of the network device, then the network card won't PXE boot unless the first boot
sector on the hard disk is blank. If the network device is listed ahead of the hard disk, then it will be
necessary to alter the guest config after install to make it boot off the installed disk. While both can be
made to work, the first option is easiest to implement.

The guest configuration shown earlier would have the following XML chunk inserted:

<os>
 <type arch='x86_64' machine='pc'>hvm</type>
 <boot dev='hd'/>
 <boot dev='network'/>
</os>

NB, this assumes the hard disk boot sector is blank initially, so that the first boot attempt falls through
to the NIC. With the configuration determined, it is now possible to provision the guest. This is an easy
process, simply requiring a persistent guest to be defined, and then booted.

const char *xml = "<domain>....</domain>";
virDomainPtr dom;

dom = virDomainDefineXML(conn, xml);
if (!dom) {
 fprintf(stderr, "Unable to define persistent guest configuration");
 return;
}

if (virDomainCreate(dom) < 0) {

Chapter 4. Guest Domains Draft

28

 fprintf(stderr, "Unable to boot guest configuration");
}

If it was not possible to guarantee that the boot sector of the hard disk is blank, then provisioning
would have been a two step process. First a transient guest would have been booted using network as
the primary boot device. Once that completed, then a persistent configuration for the guest would be
defined to boot off the hard disk.

4.3.1.2.3. Direct kernel boot provisioning
Paravirtualization technologies emulate a fairly restrictive set of hardware, often making it impossible
to use the provisioning options just outlined. For such scenarios it is often possible to boot a new guest
domain directly from an kernel and initrd image stored on the host file system. This has one interesting
advantage, which is that it is possible to directly set kernel command line boot arguments, making
it very easy to do fully automated installation. This advantage can be compelling enough that this
technique is used even for fully virtualized guest domains with CD-ROM drive/PXE support.

The one complication with direct kernel booting is that provisioning becomes a two step process. For
the first step, it is necessary to configure the guest XML configuration to point to a kernel/initrd.

<os>
 <type arch='x86_64' machine='pc'>hvm</type>
 <kernel>/var/lib/libvirt/boot/f11-x86_64-vmlinuz</kernel>
 <initrd>/var/lib/libvirt/boot/f11-x86_64-initrd.img</initrd>
 <cmdline>method=http://download.fedoraproject.org/pub/fedora/linux/releases/11/x86_64/os
 console=ttyS0 console=tty</cmdline>
</os>

Notice how the kernel command line provides the URL of download site containing the distro
install tree matching the kernel/initrd. This allows the installer to automatically download all its
resources without prompting the user for install URL. It could also be used to provide a kickstart file
for completely unattended installation. Finally, this command line also tells the kernel to activate both
the first serial port and the VGA card as consoles, with the latter being the default. Having kernel
messages duplicated on the serial port in this manner can be a useful debugging avenue. Of course
valid command line arguments vary according to the particular kernel being booted. Consult the kernel
vendor/distributor's documentation for valid options.

The last XML configuration detail before starting the guest, is to change the 'on_reboot' element action
to be 'destroy'. This ensures that when the guest installer finishes and requests a reboot, the guest is
instead powered off. This allows the management application to change the configuration to make it
boot off, just installed, the hard disk again. The provisioning process can be started now by creating a
transient guest with the first XML configuration

const char *xml = "<domain>....</domain>";
virDomainPtr dom;

dom = virDomainCreateXML(conn, xml);
if (!dom) {
 fprintf(stderr, "Unable to boot transient guest configuration");
 return;
}

Draft Save / restore

29

Once this guest shuts down, the second phase of the provisioning process can be started. For this
phase, the 'OS' element will have the kernel/initrd/cmdline elements removed, and replaced by either
a reference to a host side bootloader, or a BIOS boot setup. The former is used for Xen paravirtualized
guests, while the latter is used for fully virtualized guests.

The phase 2 configuration for a Xen paravirtualized guest would thus look like:

<bootloader>/usr/bin/pygrub</bootloader>
<os>
 <type arch='x86_64' machine='pc'>xen</type>
</os>

while a fully-virtualized guest would use:

<bootloader>/usr/bin/pygrub</bootloader>
<os>
 <type arch='x86_64' machine='pc'>hvm</type>
 <boot dev='hd'/>
</os>

With the second phase configuration determined, the guest can be recreated, this time using a
persistent configuration

const char *xml = "<domain>....</domain>";
virDomainPtr dom;

dom = virDomainCreateXML(conn, xml);
if (!dom) {
 fprintf(stderr, "Unable to define persistent guest configuration\n");
 return;
}

if (virDomainCreate(dom) < 0) {
 fprintf(stderr, "Unable to boot persistent guest\n");
 return;
}

fprintf(stderr, "Guest provisoning complete, OS is running\n");

4.3.2. Save / restore
Save and restore refers to the process of taking a running guest and saving its memory state to a file.
At some time later, it is possible to restore the guest to its original running state, continuing execution
where it left off.

It is important to note that the save/restore APIs only save the memory state, no storage state is
preserved. Thus when the guest is restored, the underlying guest storage must be in exactly the same
state as it was when the guest was initially saved. For basic usage this implies that a guest can only
be restored once from any given saved state image. To allow a guest to be restored from the same
saved state multiple times, the application must also have taken a snapshot of the guest storage at

Chapter 4. Guest Domains Draft

30

time of saving, and explicitly revert to this storage snapshot when restoring. A future API enhancement
in libvirt will allow for an automated snapshot capability which saves memory and storage state in one
operation.

The save operation requires the fully qualified path to a file in which the guest memory state will be
saved. This filename is in the hypervisor's file system, not the libvirt client application's. There's no
difference between the two if managing a local hypervisor, but it is critically important if connecting
remotely to a hypervisor across the network. The example that follows demonstrates saving a guest
called 'demo-guest' to a file. It checks to verify that the guest is running before saving, though this is
technically redundant since the hypervisor driver will do such a check itself.

virDomainPtr dom;
virDomainInfoPtr info;
const char *filename = "/var/lib/libvirt/save/demo-guest.img";

dom = virDomainLookupByName(conn, "demo-guest");
if (!dom) {
 fprintf(stderr, "Cannot find guest to be saved");
 return;
}

if (virDomainGetInfo(dom, &info) < 0) {
 fprintf(stderr, "Cannot check guest state");
 return;
}

if (info.state == VIR_DOMAIN_SHUTOFF) {
 fprintf(stderr, "Not saving guest that isn't running");
 return;
}

if (virDomainSave(dom, filename) < 0) {
 fprintf(stderr, "Unable to save guest to %s", filename);
}

fprintf(stderr, "Guest state saved to %s", filename);

Some period of time later, the saved state file can then be used to restart the guest where it left of,
using the virDomainRestore API. The hypervisor driver will return an error if the guest is already
running, however, it won't prevent attempts to restore from the same state file multiple times. As noted
earlier, it is the applications' responsibility to ensure the guest storage is in exactly the same state as it
was when the save image was created

virDomainPtr dom;
int id;
const char *filename = "/var/lib/libvirt/save/demo-guest.img";

if ((id = virDomainRestore(conn, filename)) < 0) {
 fprintf(stderr, "Unable to restore guest from %s", filename);
}

dom = virDomainLookupByID(conn, id);
if (!dom) {
 fprintf(stderr, "Cannot find guest that was restored");
 return;
}

Draft Migration

31

fprintf(stderr, "Guest state restored from %s", filename);

4.3.3. Migration
TBD

4.3.4. Autostart
TBD

4.4. Monitoring performance
TBD

4.4.1. Domain performance
TBD

4.4.2. vCPU performance
TBD

4.4.3. I/O statistics
TBD

4.5. Domain configuration
TBD

4.5.1. Boot modes
TBD

4.5.2. Memory / CPU resources
TBD

4.5.3. Lifecycle controls
TBD

4.5.4. Clock sync
TBD

4.5.5. Features
TBD

Chapter 4. Guest Domains Draft

32

4.6. Device configuration
TBD

4.6.1. Emulator
TBD

4.6.2. Disks
TBD

4.6.3. Networking
TBD

4.6.4. Filesystems
TBD

4.6.5. Mice & tablets
TBD

4.6.6. USB device passthrough
TBD

4.6.7. PCI device passthrough
The PCI device passthrough capability allows a physical PCI device from the host machine to be
assigned directly to a guest machine.The guest OS drivers can use the device hardware directly
without relying on any driver capabilities from the host OS.

Some caveats apply when using PCI device passthrough. When a PCI device is directly assigned to a
guest, migration will not be possible, without first hot-unplugging the device from the guest. In addition
libvirt does not guarantee that direct device assignment is secure, leaving security policy decisions
to the underlying virtualization technology. Secure PCI device passthrough typically requires special
hardware capabilities, such the VT-d feature for Intel chipset, or IOMMU for AMD chipsets.

There are two modes in which a PCI device can be attached, "managed" or "unmanaged" mode,
although at time of writing only KVM supports "managed" mode attachment. In managed mode, the
configured device will be automatically detached from the host OS drivers when the guest is started,
and then re-attached when the guest shuts down. In unmanaged mode, the device must be explicit
detached ahead of booting the guest. The guest will refuse to start if the device is still attached to the
host OS. The libvirt 'Node Device' APIs provide a means to detach/reattach PCI devices from/to host
drivers. Alternatively the host OS may be configured to blacklist the PCI devices used for guest, so
that they never get attached to host OS drivers.

In both modes, the virtualization technology will always perform a reset on the device before starting a
guest, and after the guest shuts down. This is critical to ensure isolation between host and guest OS.
There are a variety of ways in which a PCI device can be reset. Some reset techniques are limited
in scope to a single device/function, while others may affect multiple devices at once. In the latter
case, it will be necessary to co-assign all affect devices to the same guest, otherwise a reset will be

Draft Live configuration change

33

impossible to do safely. The node device APIs can be used to determine whether a device needs to
be co-assigned, by manually detaching the device and then attempting to perform the reset operation.
If this succeeds, then it will be possible to assign the device to a guest on its own. If it fails, then it will
be necessary to co-assign the device will others on the same PCI bus. The section documenting node
device APIs covers this topic in detail, but as a quick demonstration the following code checks whether
a PCI device (represented by a virNodeDevicePtr object instance) can be reset and is thus assignable
to a guest

virNodeDevicePtr dev =get virNodeDevicePtr for the PCI device...

if (virNodeDeviceDettach(dev) < 0) {
 fprintf(stderr, "Device cannot be dettached from the host OS drivers\n");
 return;
}

if (virNodeDeviceReset(dev) < 0) {
 fprintf(stderr, "Device cannot be safely reset without affecting other devices\n");
 return;
}

fprintf(stderr, "Device is suitable for passthrough to a guest\n");

A PCI device is attached to a guest using the 'hostdevice' element. The 'mode' attribute should always
be set to 'subsystem', and the 'type' attribute to 'pci'. The 'managed' attribute can be either 'yes' or 'no'
as required by the application. Within the 'hostdevice' element there is a 'source' element and within
that a further 'address' element is used to specify the PCI device to be attached. The address element
expects attributes for 'domain', 'bus', 'slot' and 'function'. This is easiest to see with a short example

<hostdev mode='subsystem' type='pci' managed='yes'>
 <source>
 <address domain='0x0000'
 bus='0x06'
 slot='0x12'
 function='0x5'/>
 </source>
</hostdev>

4.7. Live configuration change
TBD

4.7.1. Memory ballooning
TBD

4.7.2. CPU hotplug
TBD

4.7.3. Device hotplug / unplug
TBD

Chapter 4. Guest Domains Draft

34

4.7.4. Device media change
TBD

4.8. Security model
TBD

4.9. Event notifications
TBD

4.10. Tuning
TBD

4.10.1. Scheduler parameters
TBD

4.10.2. NUMA placement
TBD

Chapter 5. Draft

35

Storage Pools
This is a test paragraph

5.1. Overview
TBD

5.2. Listing pools
TBD

5.3. Pool usage
TBD

5.4. Lifecycle control
TBD

5.5. Discovering pool sources
TBD

5.6. Pool configuration
TBD

5.7. Volume overview
TBD

5.8. Listing volumes
TBD

5.9. Volume information
TBD

5.10. Creating and deleting volumes
TBD

5.11. Cloning volumes
TBD

Chapter 5. Storage Pools Draft

36

5.12. Configuring volumes
TBD

Chapter 6. Draft

37

Virtual Networks
TBD

6.1. Overview
TBD

6.2. Listing networks
TBD

6.3. Lifecycle control
TBD

6.4. Network configuration
TBD

38

Chapter 7. Draft

39

Network Interfaces
This section covers the management of physical network interfaces using the libvirt API.

7.1. Overview
The configuration of network interfaces on physical hosts can be examined and modified with
functions in the virInterface API. This is useful for setting up the host to share one physical interface
bewteen multiple guest domains you want connected directly to the network (briefly - enslave a
physical interface to the bridge, then create a tap device for each VM you want to share the interface),
as well as for general host network interface management. In addition to physical hardware, this API
can also be used to configure bridges, bonded interfaces, and vlan interfaces.

The virInterface API is *not* used to configure virtual networks (used to conceal the guest domain's
interface behind a NAT); virtual networks are instead configured using the virNetwork API described in
chapter 6.

Each host interface is represented in the API by a virInterfacePtr - a pointer to an "interface object" -
and each of these has a single unique identifier:

name: a string unique among all interfaces (active or inactive) on a host. This is the same string used
by the operating system to identify the interface (eg: "eth0" or "br1").

Each interface object also has a second, non-unique index that can be duplicated in other interfaces
on the same host:

mac: an ASCII string representation of the MAC address of this interface. Since multiple interfaces
can share the same MAC address (for example, in the case of VLANs), this is *not* a unique identifier.
However, it can still be used to search for an interface.

All interfaces configured with libvirt should be considered as persistent, since libvirt is actually
changing the host's own persistent configuration data (usually contained in files somewhere under /
etc), and not the interface itself. However, there are API functions to start and stop interfaces, and
those actions cause the new configuration to be applied to the interface immediately.

When a new interface is defined (with virInterfaceDefineXML), or the configuration of an existing
interface is changed (again, with virInterfaceDefineXML), this configuration will be stored on the host,
but the live configuration of the interface itself will not be changed until either the interface is started
(with virInterfaceCreate), or the host is rebooted.

7.2. XML Interface Description Format
The current Relax NG definition of the XML that is produced/accepted by virInterfaceDefineXML/
virInterfaceGetXMLDesc can be found in the file data/xml/interface.rng of the netcf package, available
at http://git.fedorahosted.org/git/netcf.git?p=netcf.git;a=tree. Below are some examples of common
interface configurations.

<interface type='ethernet' name='eth0'>
 <start mode='onboot'/>
 <mac address='aa:bb:cc:dd:ee:ff'/>
 <protocol family='ipv4'>
 <dhcp/>

Chapter 7. Network Interfaces Draft

40

 </protocol>
</interface>

Example 7.1. XML definition of an ethernet interface using DHCP

<interface type='ethernet' name='eth0'>
 <start mode='onboot'/>
 <mac address='aa:bb:cc:dd:ee:ff'/>
 <protocol family='ipv4'>
 <ip address="192.168.0.5" prefix="24"/>
 <route gateway="192.168.0.1"/>
 </protocol>
</interface>

Example 7.2. Example 7.2 XML definition of an ethernet interface with static IP

<interface type="bridge" name="br0">
 <start mode="onboot"/>
 <mtu size="1500"/>
 <protocol family="ipv4">
 <dhcp/>
 </protocol>
 <bridge stp="off" delay="0.01">
 <interface type="ethernet" name="eth0">
 <mac address="ab:bb:cc:dd:ee:ff"/>
 </interface>
 <interface type="ethernet" name="eth1"/>
 </bridge>
</interface>

Example 7.3. Example 7.3 XML definition of a bridge device with eth0 and eth1 attached

<interface type="vlan" name="eth0.42">
 <start mode="onboot"/>
 <protocol family="ipv4">
 <dhcp peerdns="no"/>
 </protocol>
 <vlan tag="42">
 <interface name="eth0"/>
 </vlan>
</interface>

Example 7.4. XML definition of a vlan interface associated with eth0

7.3. Retrieving Information About Interfaces

7.3.1. Enumerating Interfaces
Once you have a connection to a host (a virConnectPtr) you can learn the number of interfaces
on the host with virConnectNumOfInterfaces and virConnectNumOfDefinedInterfaces, and a list of
those interfaces' names with virConnectListInterfaces and virConnectListDefinedInterfaces ("defined"
interfaces are those that have been defined, but are currently inactive). Each of these functions takes
a connection object as its first argument; the list functions also take an argument pointing to a char*

Draft Alternative method of enumerating interfaces

41

array for the result, and another giving the maximum number of entries to put in that array. All 4
functions return the number of interfaces found, or -1 if an error is encountered.

NB, error handling omitted for clarity

int numIfaces, i;
char *ifaceNames;

numIfaces = virConnectNumOfInterfaces(conn);
ifaceNames = malloc(numIfaces * sizeof(char*));
numIfaces = virConnectListInterfaces(conn, names, ct);

printf("Active host interfaces:\n");
for (i = 0; i < numIfaces; i++) {
 printf(" %s\n", ifaceNames[i]);
 free(ifaceNames[i]);
}
free(ifaceNames);

Example 7.5. Getting a list of active ("up") interfaces on a host

int numIfaces, i;
char *ifaceNames;

numIfaces = virConnectNumOfDefinedInterfaces(conn);
ifaceNames = malloc(numIfaces * sizeof(char*));
numIfaces = virConnectListDefinedInterfaces(conn, names, ct);

printf("Inactive host interfaces:\n");
for (i = 0; i < numIfaces; i++) {
 printf(" %s\n", ifaceNames[i]);
 free(ifaceNames[i]);
}
free(ifaceNames);

Example 7.6. Getting a list of inactive ("down") interfaces on a host

7.3.2. Alternative method of enumerating interfaces
It is also possible to get a list of interfaces from the virNodeDevice API. Calling virNodeListDevices
with the "cap" argument (capabilities) set to "net". This will return a list of device names (each starting
with "net_"), and those device names can, in turn, be sent through virNodeDeviceLookupByName,
then virNodeDeviceGetXMLDesc to get an XML string containing the interfaces' names, mac
addresses, and 802.11 vs. 802.03 status (wired vs wireless). See section 4.6 for more information and
examples of using virNodeDevice functions for this purpose.

7.3.3. Obtaining a virInterfacePtr for an Interface
Many operations require that you have a virInterfacePtr, but you may only have the name or MAC
address of the interface. You can use virInterfaceLookupByName and virinterfaceLookupByMACString
to get the virInterfacePtr in these cases.

virInterfacePtr iface;
const char *name = "eth0";

Chapter 7. Network Interfaces Draft

42

iface = virInterfaceLookupByName(name);

if (iface) {

 /* use the virInterfacePtr ... */

 virInterfaceFree(iface);
} else {
 printf("Interface '%s' not found.\n", name);
}

Example 7.7. Fetching the virInterfacePtr for a given interface name

virInterfacePtr iface;
const char *mac = "00:01:02:03:04:05";

iface = virInterfaceLookupByMACString(mac);

if (iface) {

 /* use the virInterfacePtr ... */

 virInterfaceFree(iface);
} else {
 printf("No interface found with MAC address '%s'.\n", mac);
}

Example 7.8. Fetching the virInterfacePtr for a given interface MAC Address

Note that, as shown in the examples, after you are finished using the virinterfacePtr, you must call
virInterfaceFree to free up its resources (even if you undefined or destroyed the interface in the
meantime). Another important detail: doing a lookup for a MAC address that has multiple matches will
result in a NULL return and a VIR_ERR_MULTIPLE_INTERFACES error being raised. This limitation
will be addressed in the near future with a new API function.

7.3.4. Retrieving Detailed Interface Info
You may also find yourself with a virInterfacePtr, and need the name or MAC address of the interface,
or want to examine the full interface configuration. virInterfaceGetName, virInterfaceGetMACString,
and virInterfaceGetXMLDesc will take care of those needs.

const char *name;
const char *mac;

name = virInterfaceGetName(iface);
mac = virInterfaceGetMACString(iface);

printf("Interface %s has MAC address %s", name, mac);

Example 7.9. Fetching the name and mac address from an interface object

Note that the strings returned by virInterfaceGetName and virInterfaceGetMACString do not need to
be freed by the application; their lifetime will be the same as the interface object.

The string returned by virInterfaceGetXMLDesc, on the other hand, is created especially for the caller,
and the caller must free it when finished. virInterfacegetXMLDesc also has a flags argument, intended

Draft Managing interface configuration files

43

for future expansion. For forward compatibility, you should always set it to 0. The returned string is
UTF-8 encoded; the same string may later be given to virInterfaceDefineXML to recreate the interface
configuration.

const char *xml;

name = virInterfaceGetXMLDesc(iface, 0);
printf("Interface configuration:\n%s\n", xml);
free(xml);

Example 7.10. Fetching the XML configuration string from an interface object

7.4. Managing interface configuration files
In libvirt, "defining" an interface means creating or changing the configuration, and "undefining" means
deleting that configuration from the system. Newcomers may sometimes confuse these two operations
with Create/Delete (which actually are used to activate and deactivate an existing interface - see
section 7.5).

7.4.1. Defining an inteface configuration
The virInterfaceDefineXML function is used both for adding new interface configurations and modifying
existing configurations. It either adds a new interface (with all information, including the interface
name, given in the xml data) or modifies the configuration of an existing interface. The newly defined
interface will be inactive until separate action is taken to make the new configuration take effect (for
example, rebooting the host, or calling virInterfaceCreate, described in section 7.5)

If the interface is successfully added/modified in the host's configuration, virInterfaceDefineXML
returns a virInterfacePtr, which can be used as a handle to perform further actions on the new
interface, eg making it active with virInterfaceCreate.

When you are finished using the returned virInterfacePtr, you must free it with virInterfaceFree (this
doesn't remove the interface itself, just the internal object used by libvirt).

/* xml is a char* containing the description, per section 7.2 */
virInterfacePtr iface;

iface = virInterfaceDefineXML(xml, 0);
if (!iface) {
 fprintf(stderr, "Failed to define interface.\n");
 /* other error handling */
 goto cleanup;
}
if (virInterfaceCreate(iface) != 0) {
 fprintf(stderr, "Failed to create (activate) interface\n");
 /* other error handling */
 goto cleanup;
}
virinterfaceFree(iface);

cleanup:
 /* ... */

Example 7.11. Defining a new interface

Chapter 7. Network Interfaces Draft

44

7.4.2. Undefining an inteface configuration
virInterfaceUndefine completely and permanently removes the configuration for the given interface
from tho host's configuration files. If you might want to recreate this configuration again in the future,
you should call virInterfacegetXMLDesc and save the string prior to the undefine.

virInterfaceUndefine does not free the virInterfacePtr itself, it only removes the configuration from the
host. You must still free the virInterfacePtr with virInterfaceFree.

virInterfacePtr iface;
char *xml = NULL;;

iface = virInterfaceLookupByName("br0");
if (!iface) {
 printf ("Interface br0 not found.\n");
} else {
 xml = virinterfaceGetXMLDesc(iface, 0);
 virInterfaceUndefine(iface);
 virinterfaceFree(iface);
}
/* you must also free the buffer at xml when you're finished with it */

Example 7.12. Undefining br0 interface after saving its XML data

7.5. Interface lifecycle management
In libvirt parlance, "creating" an interface means making it active, or "bringing it up", and "deleting"
an interface means making it inactive, or "bringing it down". On hosts using the netcf backend for
interface configuration (eg Fedora, RHEL), this is the same as calling the system shell scripts "ifup"
and "ifdown" for the interface.

7.5.1. Activating an interface
virInterfaceCreate makes the given inactive interface active ("up"). On success, it returns 0. If there is
any problem making the interface active, -1 is returned.

7.5.2. Activating an interface
virInterfaceDestroy makes the given interface inactive ("down"). On success, it returns 0. If there is
any problem making the interface acrive, -1 is returned.

virInterfacePtr iface;

iface = virInterfaceLookupByName("eth2");
if (!iface) {
 printf("Interface eth2 not found.\n");
} else {
 if (virInterfaceDestroy(iface) != 0) {
 fprintf(stderr, "failed to destroy (deactivate) interface eth2.\n");
 } else
 /* do whatever you wanted to do with interface down */
 if (virInterfaceCreate(iface) != 0) {
 fprintf(stderr, "failed to create (activate) interface eth2.\n");
 }

Draft Interface object memory management

45

 }
 free(iface);
}

Example 7.13. Temporarily bring down eth2, then bring it back up

7.6. Interface object memory management
Any time an application calls a function that returns a virInterfacePtr, it is implied that a reference
counter has been incremented for that particular interface object. To decrement the reference counter
(eventually resulting in the interface object's resources being freed), call virInterfaceFree. This
reference counting assures that the interface object will not be freed while an application is still using
it.

For cases where an application makes a copy of a virinterfacePtr and stores it away somewhere which
may require a lifetime longer than that of the original virinterfacePtr, virinterfaceRef should be called
to manually increment the reference count (and virinterfaceFree should be called an extra time, when
that copy of the virInterfacePtr is no longer being used).

virInterfacePtr iface;

iface = virInterfaceLookupByName("eth0");

mydata.iface = iface;
virInterfaceRef(mydata.iface);
/* now we're done with iface */
virInterfaceFree(iface);

...

/* now we're done with mydata.iface */
virInterfaceFree(mydata.iface);

Example 7.14. Reference counting an interface object

46

Chapter 8. Draft

47

Host Devices
Currently lacks docs

48

Chapter 9. Draft

49

Alternative Language Bindings
TBD

9.1. Python
TBD

9.2. Perl
TBD

9.3. Java
TBD

50

Draft Draft

51

Appendix A. Revision History
Revision 1 Tue Nov 17 2009 Daniel Berrange berrange@redhat.com

Initial draft of document

mailto:berrange@redhat.com

52

	Application Development Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Introduction
	1.1. Overview
	1.2. Glossary of terms

	Chapter 2. Architecture
	2.1. Object model
	2.1.1. Hypervisor connections
	2.1.2. Guest domains
	2.1.3. Virtual networks
	2.1.4. Storage pools
	2.1.5. Storage volumes
	2.1.6. Host devices

	2.2. Driver model
	2.3. Remote management
	2.3.1. Basic usage
	2.3.2. Data Transports
	2.3.3. Authentication schemes
	2.3.4. Remote URIs

	2.4. Generating TLS certificates
	2.4.1. Public Key Infrastructure setup

	Chapter 3. Connections
	3.1. Overview
	3.2. URI formats
	3.3. Capability information
	3.4. Host information
	3.5. Event loop integration
	3.5.1. Event Types

	3.6. Security model
	3.7. Error handling
	3.8. Debugging / logging

	Chapter 4. Guest Domains
	4.1. Domain overview
	4.2. Listing domains
	4.3. Lifecycle control
	4.3.1. Provisioning
	4.3.1.1. APIs for provisioning
	4.3.1.1.1. Booting a transient guest domain
	4.3.1.1.2. Defining and booting a persistent guest domain

	4.3.1.2. New guest provisioning techniques
	4.3.1.2.1. CDROM/ISO image provisioning
	4.3.1.2.2. PXE boot provisioning
	4.3.1.2.3. Direct kernel boot provisioning

	4.3.2. Save / restore
	4.3.3. Migration
	4.3.4. Autostart

	4.4. Monitoring performance
	4.4.1. Domain performance
	4.4.2. vCPU performance
	4.4.3. I/O statistics

	4.5. Domain configuration
	4.5.1. Boot modes
	4.5.2. Memory / CPU resources
	4.5.3. Lifecycle controls
	4.5.4. Clock sync
	4.5.5. Features

	4.6. Device configuration
	4.6.1. Emulator
	4.6.2. Disks
	4.6.3. Networking
	4.6.4. Filesystems
	4.6.5. Mice & tablets
	4.6.6. USB device passthrough
	4.6.7. PCI device passthrough

	4.7. Live configuration change
	4.7.1. Memory ballooning
	4.7.2. CPU hotplug
	4.7.3. Device hotplug / unplug
	4.7.4. Device media change

	4.8. Security model
	4.9. Event notifications
	4.10. Tuning
	4.10.1. Scheduler parameters
	4.10.2. NUMA placement

	Chapter 5. Storage Pools
	5.1. Overview
	5.2. Listing pools
	5.3. Pool usage
	5.4. Lifecycle control
	5.5. Discovering pool sources
	5.6. Pool configuration
	5.7. Volume overview
	5.8. Listing volumes
	5.9. Volume information
	5.10. Creating and deleting volumes
	5.11. Cloning volumes
	5.12. Configuring volumes

	Chapter 6. Virtual Networks
	6.1. Overview
	6.2. Listing networks
	6.3. Lifecycle control
	6.4. Network configuration

	Chapter 7. Network Interfaces
	7.1. Overview
	7.2. XML Interface Description Format
	7.3. Retrieving Information About Interfaces
	7.3.1. Enumerating Interfaces
	7.3.2. Alternative method of enumerating interfaces
	7.3.3. Obtaining a virInterfacePtr for an Interface
	7.3.4. Retrieving Detailed Interface Info

	7.4. Managing interface configuration files
	7.4.1. Defining an inteface configuration
	7.4.2. Undefining an inteface configuration

	7.5. Interface lifecycle management
	7.5.1. Activating an interface
	7.5.2. Activating an interface

	7.6. Interface object memory management

	Chapter 8. Host Devices
	Chapter 9. Alternative Language Bindings
	9.1. Python
	9.2. Perl
	9.3. Java

	Appendix A. Revision History

